Polarization-domain-wall complexes in fiber lasers

Year: 2013

Authors: Lecaplain C., Grelu P., Wabnitz S.

Autors Affiliation: Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, 9 avenue A. Savary, BP 47870 Dijon Cedex 21078, France; Dipartimento di Ingegneria dell\’Informazione, Universitá di Brescia, Via Branze 38, Brescia 25123, Italy

Abstract: We present a simple theoretical model that explains polarization switching in fiber ring lasers operating with a normal path-averaged dispersion and a typical intermediate level of birefringence. Such polarization dynamics, based on a type of polarization-domain-wall (PDW) structures, agree qualitatively well with our experimental observations. We also stress the complex and chaotic nature of the observed polarization-switching states. This is corroborated by detailed numerical simulations that predict the buildup of consecutive and transient PDW structures at the subnanosecond scale, which are not fully resolved experimentally.


Volume: 30 (1)      Pages from: 211  to: 218

More Information: C. L. and Ph. G. acknowledge support from the Agence Nationale de la Recherche (\”Solicristal\” project ANR-2010-BLANC-0417-01). The work of S. W. was carried out with support from the Conseil Regional de Bourgogne, the iXCore Foundation, and the Italian Ministry of University and Research (MIUR) through grant contract 2008MPSSN.
KeyWords: Fiber lasers; Ring lasers, Chaotic nature; Experimental observation; In-fiber; Intermediate level; Polarization dynamics; Polarization switching; Subnanosecond; Theoretical models, Polarization
DOI: 10.1364/JOSAB.30.000211

Citations: 31
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-07-14
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here