Scientific Results

Dynamics of microresonator frequency comb generation: Models and stability

Year: 2016

Authors: Hansson T., Wabnitz S.

Autors Affiliation: Department of Applied Physics, Chalmers University of Technology, G√∂teborg, SE-41296, Sweden; Dipartimento di Ingegneria Dell\’Informazione, Universit√† di Brescia, Istituto Nazionale di Ottica Del CNR, via Branze 38, Brescia, 25123, Italy

Abstract: Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.


Volume: 5 (2)      Pages from: 231  to: 243

KeyWords: Light sources; Models; Multiphoton processes; Nonlinear optics; Resonators, Design and optimization; Frequency combs; Instability mechanisms; Micro resonators; Modulational instability; Multi-photon absorption; Optical frequency combs; Parametric instabilities, Stability
DOI: 10.1515/nanoph-2016-0012

Citations: 10
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-02-28
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here