Scientific Results

Comparative study of different functionalized graphene-nanoplatelet aqueous nanofluids for solar energy applications

Year: 2019

Authors: Vallejo J., Mercatelli L., Martina M.R., Di Rosa D., Dell’Oro A., Lugo L., Sani E.

Autors Affiliation: Departamento de Física Aplicada, Facultade de Ciencias, Universidade de Vigo, E-36310, Vigo, Spain; CNR-INO National Institute of Optics, Largo E. Fermi, 6, I-50125, Firenze, Italy; University of Pisa, Department of Energy, Systems, Territory and Constructions Engineering (D.E.S.T.eC.), Largo L. Lazzarino, I-56122, Pisa, Italy; INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze, Italy

Abstract: The optical properties of nanofluids are peculiar and interesting for a variety of applications. Among them, the high light extinction coefficient of nanofluids can be useful in linear parabolic concentrating solar systems, while their properties under high light irradiation intensities can be exploited for direct solar steam generation. The optical characterization of colloids, including the study of non-linear optical properties, is thus a needed step to design the use of such novel materials for solar energy exploitation. In
this work, we analysed two different types of nanofluids, consisting of polycarboxylate chemically modified graphene nanoplatelets (P-GnP) and sulfonic acid-functionalized graphene nanoplatelets (SGnP) dispersed in water, at three concentrations from 0.005 wt% to 0.05 wt%. Moderately stable nanofluids were achieved with favourable light extinction properties, as well as a non-linear optical behaviour under high input solar intensities.


Volume: 141      Pages from: 791  to: 801

KeyWords: Direct absorption solar collectors
Concentrating solar power
Solar steam generation
Graphene nanoplatelets
Optical properties
DOI: 10.1016/j.renene.2019.04.075

Citations: 19
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-12-05
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more