Exploring 4D quantum Hall physics with a 2D topological charge pump

Year: 2018

Authors: Lohse M., Schweizer C., Price H., Zilberberg O., Bloch I.

Autors Affiliation: [Lohse, Michael; Schweizer, Christian; Bloch, Immanuel] Ludwig Maximilians Univ Munchen, Fak Phys, Schellingstr 4, D-80799 Munich, Germany and Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany.
[Price, Hannah M.] INO CNR BEC Ctr, Via Sommarive 14, I-38123 Povo, Italy and Univ Trento, Dipartimento Fis, Via Sommarive 14, I-38123 Povo, Italy and Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England.
[Zilberberg, Oded] ETH, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland

Abstract: The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect(1): it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field(2). Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant-the second Chern number(3,4). Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect(5,6). Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted(4).

Journal/Review: NATURE

Volume: 553 (7686)      Pages from: 55  to: 58

KeyWords: energy-spectrum; magnetic field; edge states; insulator; transport
DOI: 10.1038/nature25000

Citations: 226
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2023-01-29
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here