The laser control of the muon g-2 experiment at Fermilab

Year: 2018

Authors: Anastasi A., Anastasio A., Avino S., Basti A., Bedeschi F., Boiano A., Cantatore G., Cauz D., Ceravolo S., Corradi G., Dabagov S., Meo P.D., Driutti A., Sciascio G.D., Stefano R.D., Escalante O., Ferrari C., Fienberg A.T., Fioretti A., Gabbanini C., Gagliardi G., Gioiosa A., Hampai D., Hertzog D.W., Iacovacci M., Incagli M., Karuza M., Kaspar J., Lusiani A., Marignetti F., Mastroianni S., Moricciani D., Nath A., Pauletta G., Piacentino G.M., Raha N., Santi L., Smith M.W., Venanzoni G.

Autors Affiliation: INFN, Lab Nazl Frascati, Frascati, Italy; INFN, Sez Napoli, Naples, Italy; INFN, Sez Trieste, Trieste, Italy; INFN, Sez Roma Tor Vergata, Rome, Italy; INFN, Sez Lecce, Lecce, Italy; INFN, Sez Pisa, Pisa, Italy; CNR, Ist Nazl Ott, Pisa, Italy; Scuola Normale Super Pisa, Pisa, Italy; Univ Naples Federico II, Naples, Italy; Univ Messina, Dipartimento MIFT, Messina, Italy; Univ Rijeka, Rijeka, Croatia; PN Lebedev Phys Inst, Moscow, Russia; NR Nucl Univ MEPhI, Moscow, Russia; Univ Cassino, Cassino, Italy; Univ Udine, Udine, Italy; Univ Washington, Seattle, WA 98195 USA; Univ Trieste, Trieste, Italy; CNR, Ist Nazl Ott, Pozzuoli, Italy; GC Udine, Udine, Italy.

Abstract: The Muon g – 2 Experiment at Fermilab is expected to start data taking in 2017. It will measure the muon anomalous magnetic moment, a mu = (g mu – 2)/2 to an unprecedented precision: the goal is 0.14 parts per million (ppm). The new experiment will require upgrades of detectors, electronics and data acquisition equipment to handle the much higher data volumes and slightly higher instantaneous rates. In particular, it will require a continuous monitoring and state- of- art calibration of the detectors, whose response may vary on both the millisecond and hour long timescale.
The calibration system is composed of six laser sources and a light distribution system will provide short light pulses directly into each crystal (54) of the 24 calorimeters which measure energy and arrival time of the decay positrons.
A Laser Control board will manage the interface between the experiment and the laser source, allowing the generation of light pulses according to specific needs including detector calibration, study of detector performance in running conditions, evaluation of DAQ performance.
Here we present and discuss the main features of the Laser Control board.

Journal/Review: JOURNAL OF INSTRUMENTATION

Volume: 13      Pages from: T02009-1  to: T02009-13

More Information: This research was supported by Istituto Nazionale di Fisica Nucleare (Italy) and by the EU Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No. 690835.
SD would like to thank the support by the Competitiveness Program of National Research Nuclear University MEPhI.
KeyWords: Calibration; Charged particles; Data acquisition; Light transmission; Magnetic moments; Anomalous magnetic moments; Continuous monitoring; Data acquisition equipment; Detector calibration; Detector performance; Light distribution; Parts per millions; Running conditions; Light
DOI: 10.1088/1748-0221/13/02/T02009

ImpactFactor: 1.366
Citations: 8
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-10
References taken from IsiWeb of Knowledge: (subscribers only)

Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here