Disorder and dephasing as control knobs for light transport in optical fiber cavity networks

Year: 2016

Authors: Viciani S., Gherardini S., Lima M., Bellini M., Caruso F.

Autors Affiliation: CNR-INO, National Institute of Optics, Largo Fermi 6, I-50125 Firenze, Italy; LENS, European Laboratory for Non-linear Spectroscopy, University of Florence, via N. Carrara 1, I-50019 Sesto Fiorentino, Italy; QSTAR and Department of Physics and Astronomy, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy; INFN and Department of Information Engineering, University of Florence, via S. Marta 3, I-50139 Florence, Italy.

Abstract: Transport phenomena represent a very interdisciplinary topic with applications in many fields of science, such as physics, chemistry, and biology. In this context, the possibility to design a perfectly controllable experimental setup, where to tune and optimize its dynamics parameters, is a challenging but very relevant task to emulate, for instance, the transmission of energy in light harvesting processes. Here, we experimentally build a scalable and controllable transport emulator based on optical fiber cavity networks where the system noise parameters can be finely tuned while maximizing the transfer efficiency. In particular, we demonstrate that disorder and dephasing noise are two control knobs allowing one to play with constructive and destructive interference to optimize the transport paths towards an exit site. These optical setups, on one side, mimic the transport dynamics in natural photosynthetic organisms and, on the other, are very promising platforms to artificially design optimal nanoscale structures for novel, more efficient, clean energy technologies.

Journal/Review: SCIENTIFIC REPORTS

Volume: 6      Pages from: 37791-1  to: 37791-11

More Information: The authors gratefully acknowledge fruitful discussions with P. Scudo and R. Fusco. This work was supported by the Future in Research (FIRB) Programme of the Italian Ministry of Education, University and Research (MIUR), under the FIRB-MIUR grant agreement No. RBFR10M3SB, and performed in the framework of the ENI contract No. 3500023215. The work of F.C. has been also supported by a Marie Curie Career Integration Grant within the 7th European Community Framework Programme, under the grant agreement QuantumBioTech No. 293449, and by the Ente Cassa di Risparmio di Firenze through the project Q-BIOSCAN.
KeyWords: quantum coherence; energy-transport; temperature; complexes
DOI: 10.1038/srep37791

Citations: 11
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-04-21
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here