Non-linear imaging and characterization of atherosclerotic arterial tissue using combined SHG and FLIM microscopy
Year: 2015
Authors: Cicchi R., Baria E., Matthäus C., Lange M., Lattermann A., Brehm BR., Popp J., Pavone FS.
Autors Affiliation: Natl Res Council INO CNR, Natl Inst Opt, I-50125 Florence, Italy; European Lab Nonlinear Spect LENS, I-50019 Sesto Fiorentino, Italy; Leibniz Inst Photon Technol IPHT Jena, D-07745 Jena, Germany; Inst Biomed Engn & Nanotechnol, Riga, Latvia; Univ Jena, Jena Univ Hosp, Inst Pathol, Dept Neuropathol, D-07740 Jena, Germany; Herz Neurozentrum Bodensee, CH-8280 Kreuzlingen, Switzerland; Univ Jena, Inst Phys Chem, D-07743 Jena, Germany; Univ Jena, Abbe Ctr Photon, D-07743 Jena, Germany; Univ Florence, Dept Phys, I-50019 Sesto Fiorentino, Italy; Int Ctr Computat Neurophoton ICON, I-50019 Florence, Italy.
Abstract: Atherosclerosis is one of the leading causes of death in the Western World and its characterization is extremely interesting from the diagnostic point of view. Here, we employed combined SHG-FLIM microscopy to characterize arterial tissue with atherosclerosis. The shorter mean fluorescence lifetime measured within plaque depositions (1260 ± 80 ps) with respect to normal arterial wall (1480 ± 100 ps) allowed discriminating collagen from lipids. SHG measurements and image analysis demonstrated that the normal arterial wall has a more anisotropic Aspect Ratio (0.37 ± 0.02) with respect to plaque depositions (0.61 ± 0.02) and that the correlation length can be used for discriminating collagen fibre bundles (2.0 ± 0.6 µm) from cholesterol depositions (4.1 ± 0.6 µm). The presented method has the potential to find place in a clinical setting as well as to be applied in vivo in the near future. Graphic composition of SHG and FLIM images representing normal arterial wall and plaque depositions. Atherosclerosis is among the most widespread cardiovascular diseases and its early diagnosis is crucial for avoiding life threatening consequences. Non-linear microscopy can diagnose tissues and atherosclerosis in a label-free modality, opening the way for a clinical use of these optical techniques. Combined SHG-FLIM microscopy is demonstrated to be extremely powerful for diagnosing and characterizing atherosclerosis.
Journal/Review: JOURNAL OF BIOPHOTONICS
Volume: 8 (4) Pages from: 347 to: 356
More Information: The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 284464, from the Italian Ministry for Education, University and Research in the framework of the Flagship Project NANOMAX, from Fondazione Pisa, from Italian Ministry of Health (GR2011-02349626), from Tuscany Region (EU-FP7-BiophotonicsPlus \”LITE\”) and from Ente Cassa di Risparmio di Firenze. Authors are grateful for support by the European network of excellence Photonics4Life (P4L).KeyWords: Aspect ratio; Collagen; Diseases; Tissue, Arterial tissue; Atherosclerosis; Clinical settings; Collagen fibres; Correlation lengths; Fluorescence lifetimes; Graphic compositions; Nonlinear imaging, Deposition, collagen, animal; artery; atherosclerotic plaque; fluorescence imaging; image processing; metabolism; microscopy; pathology; procedures; rabbit, Animals; Arteries; Collagen; Image Processing, Computer-Assisted; Microscopy; Optical Imaging; Plaque, Atherosclerotic; RabbitsDOI: 10.1002/jbio.201400142ImpactFactor: 3.818Citations: 19data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-12-08References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here