Towards deep-UV surface-enhanced resonance Raman spectroscopy of explosives: ultrasensitive, real-time and reproducible detection of TNT

Year: 2015

Authors: Jha S.K., Ekinci Y., Agio M., Löffler J.F.

Autors Affiliation: Laboratory of Metal Physics and Technology, Department of Materials, ETH Zürich, Switzerland; Laboratory of Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; National Institute of Optics (INO-CNR) and European Laboratory for Nonlinear Spectroscopy (LENS), via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy

Abstract: We report ultrasensitive and label-free detection of 2,4,6-trinitrotoluene (TNT) deposited by drop coating using deep-ultraviolet surface-enhanced resonance Raman scattering (DUV-SERRS). Well-defined aluminum nanoparticle arrays as the SERRS substrate at 257 nm excitation wavelength enabled highly reproducible and real-time detection of TNT down to the detection limit of the attogram level in quantity. This extreme sensitivity can be further improved by optimization of the nanostructured substrates. DUV-SERRS promises to have a large impact on public safety and security, as it can be readily extended to other explosives and hazardous materials.

Journal/Review: ANALYST

Volume: 140 (16)      Pages from: 5671  to: 5677

More Information: The authors would like to thank Michaela Vockenhuber and M. K. Singh for their technical assistance and acknowledge support by an ETH Research Grant (TH-29/07-3). Part of this work was performed at the Swiss Light Source (SLS), Paul Scherrer Institute, Switzerland.
KeyWords: Label-free cetection; Nanoparticle arrays; Ultraviolet; Scattering; Trinitrotoluene; Excitation; Silver; Gold; Sers; Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
DOI: 10.1039/c4an01719f

Citations: 22
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-03-24
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here