Full Counting Statistics and Phase Diagram of a Dissipative Rydberg Gas

Year: 2014

Authors: Malossi N., Valado M., Scotto S., Huillery P., Pillet P., Ciampini D.,Arimondo E., Morsch O.

Autors Affiliation: INO-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy; Dipartimento di Fisica “E. Fermi,” Università di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy; Laboratoire Aimé Cotton, CNRS, Univ Paris-Sud 11, ENS-Cachan, Campus d’Orsay Batiment 505, 91405 Orsay, France; CNISM UdR Dipartimento di Fisica “E. Fermi,” Università di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy

Abstract: Ultracold gases excited to strongly interacting Rydberg states are a promising system for quantum simulations of many-body systems. For off-resonant excitation of such systems in the dissipative regime, highly correlated many-body states exhibiting, among other characteristics, intermittency and multimodal counting distributions are expected to be created. Here we report on the realization of a dissipative gas of rubidium Rydberg atoms and on the measurement of its full counting statistics and phase diagram for both resonant and off-resonant excitation. We find strongly bimodal counting distributions in the off-resonant regime that are compatible with intermittency due to the coexistence of dynamical phases. Our results pave the way towards detailed studies of many-body effects in Rydberg gases.

Journal/Review: PHYSICAL REVIEW LETTERS

Volume: 113 (2)      Pages from: 023006  to: 023006

More Information: This work was supported by PRIN and the EU Marie Curie ITN COHERENCE. The authors thank R. Fazio, A. Tomadin, M. Dell\’Orso, R. Mannella, and I. Lesanovsky for discussions.
DOI: 10.1103/PhysRevLett.113.023006

ImpactFactor: 7.512
Citations: 133
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-09-08
References taken from IsiWeb of Knowledge: (subscribers only)

Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here