Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method

Year: 2014

Authors: Bianco V., Merola F., Miccio L., Memmolo P., Gennari O., Paturzo M., Netti P. A., Ferraro P.

Autors Affiliation: CNR – National Institute of Optics (INO), Via Campi Flegrei, 34, I-80078, Pozzuoli (NA), Italy;
Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, L. Barsanti e Matteucci (NA), 53, I-80125, Italy

Abstract: Imaging through turbid media is a challenging topic. A liquid is considered turbid when dispersed particles provoke strong light scattering, thus destroying the image formation by any standard optical system. Generally, colloidal solutions belong to the class of turbid media since dispersed particles have dimensions ranging between 0.2 mu m and 2 mu m. However, in microfluidics, another relevant issue has to be considered in the case of flowing liquid made of a multitude of occluding objects, e.g. red blood cells (RBCs) flowing in veins. In such a case instead of severe scattering processes unpredictable phase delays occur resulting in a wavefront distortion, thus disturbing or even hindering the image formation of objects behind such obstructing layer. In fact RBCs can be considered to be thin transparent phase objects. Here we show that sharp amplitude imaging and phase-contrast mapping of cells hidden behind biological occluding objects, namely RBCs, is possible in harsh noise conditions and with a large field-of view by Multi-Look Digital Holography microscopy (ML-DH). Noteworthy, we demonstrate that ML-DH benefits from the presence of the RBCs, providing enhancement in terms of numerical resolution and noise suppression thus obtaining images whose quality is higher than the quality achievable in the case of a liquid without occlusive objects.

Journal/Review: LAB ON A CHIP

Volume: 14 (14)      Pages from: 2499  to: 2504

More Information: This work was supported by Progetto Bandiera \”La Fabbrica del Futuro\” in the framework of the funded project \”Plastic lab-on-chips for the optical manipulation of single cells\” (PLUS).
DOI: 10.1039/c4lc00290c

Citations: 52
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-03-24
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here