Observation of electron transport dynamics in high intensity laser interactions using multi-energy monochromatic x-ray imaging
Year: 2007
Authors: Gizzi LA., Giulietti A., Giulietti D., Koester P., Labate L., Levato T., Zamponi F., Luebcke A., Kaempfer T., Uschmann I., Foerster E., Antonicci A., Batani D.
Autors Affiliation: Intense Laser Irradiation Laboratory—IPCF, Consiglio Nazionale delle Ricerche, Via Moruzzi 1, 56124 Pisa, Italy;
INFN, Sezione di Pisa, Largo B. Pontecorro 3, 56127 Pisa, Italy;
Dip. Fisica, Universit`a di Pisa, Largo B. Pontecorro 3, 56127 Pisa, Italy;
Institute of Optics and Quantum Electronics, Friedrich-Schiller University, Max-Wien-Platz 1, 07743 Jena, Germany;
Dipartimento di Fisica G Occhialini, Universita Milano Bicocca, Milano, Italy
Abstract: We describe recent measurements in which a novel imaging technique was used to investigate the transport of high energy electrons produced by the interaction of a femtosecond laser pulse with a three-layer target at an intensity of 5 x 10(19) W cm(-2). The imaging system was configured to work in a singlephoton detection regime to identify the energy of the x-ray photons and to discriminate among K alpha photons generated in each target layer. Electrons emerging from the rear side after propagation through all the target layers were also detected using a custom developed detector. The results on fast electron propagation are combined with the information obtained from electron diagnostics and are modelled using analytical and numerical codes to obtain a detailed description of electron propagation dynamics.
Journal/Review: PLASMA PHYSICS AND CONTROLLED FUSION
Volume: 49 (12) Pages from: B211 to: B221
KeyWords: dense matter; K-alpha; ultrashort; plasmas; targetDOI: 10.1088/0741-3335/49/12B/S19ImpactFactor: 3.070Citations: 29data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-09-15References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here