Stochastic quantum Zeno-based detection of noise correlations

Year: 2016

Authors: Muller M.M.; Gherardini S.; Caruso F.

Autors Affiliation: Univ Florence, QSTAR, LENS, Dept Phys & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy; Univ Florence, Dept Informat Engn, Via S Marta 3, I-50139 Florence, Italy; Univ Florence, CSDC, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy; Ist Nazl Fis Nucl, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy

Abstract: A system under constant observation is practically freezed to the measurement subspace. If the system driving is a random classical field, the survival probability of the system in the subspace becomes a random variable described by the Stochastic Quantum Zeno Dynamics (SQZD) formalism. Here, we study the time and ensemble average of this random survival probability and demonstrate how time correlations in the noisy environment determine whether the two averages do coincide or not. These environment time correlations can potentially generate non-Markovian dynamics of the quantum system depending on the structure and energy scale of the system Hamiltonian. We thus propose a way to detect time correlations of the environment by coupling a quantum probe system to it and observing the survival probability of the quantum probe in a measurement subspace. This will further contribute to the development of new schemes for quantum sensing technologies, where nanodevices may be exploited to image external structures or biological molecules via the surface field they generate.

Journal/Review: SCIENTIFIC REPORTS

Volume: 6      Pages from: 38650-1  to: 38650-9

More Information: The authors gratefully acknowledge S. Ruffo, S. Gupta, A. Smerzi, and F.S. Cataliotti for useful discussions. This work was financially supported from the Ente Cassa di Risparmio di Firenze through the project Q-BIOSCAN.
KeyWords: noise correlations, quantum Zeno effect, stochastic quantum Zeno effect, quantum sensing
DOI: 10.1038/srep38650