Spin-Orbit Coupling for Photons and Polaritons in Microstructures
Year: 2015
Authors: Sala VG., Solnyshkov DD., Carusotto I., Jacqmin T., Lemaotre A., Terzas H., Nalitov A., Abbarchi M., Galopin E., Sagnes I., Bloch J., Malpuech G., Amo A.
Autors Affiliation: CNRS, LPN, F-91460 Marcoussis, France; Univ Paris 06, Ecole Normale Super, Lab Kastler Brossel, F-75252 Paris 05, France; CNRS, F-75252 Paris 05, France; Clermont Univ, Inst Pascal, Photon N2, F-63177 Aubiere, France; Univ Blaise Pascal, CNRS, F-63177 Aubiere, France; Univ Trent, INO CNR BEC Ctr, I-38123 Povo, Italy; Univ Trent, Dipartimento Fis, I-38123 Povo, Italy; Univ Paris Diderot, Univ Paris 06, Ecole Normale Super, Lab Pierre Aigrain,CNRS UMR 8551, F-75005 Paris, France.
Abstract: We use coupled micropillars etched out of a semiconductor microcavity to engineer a spin-orbit Hamiltonian for photons and polaritons in a microstructure. The coupling between the spin and orbital momentum arises from the polarization-dependent confinement and tunneling of photons between adjacent micropillars arranged in the form of a hexagonal photonic molecule. It results in polariton eigenstates with distinct polarization patterns, which are revealed in photoluminescence experiments in the regime of polariton condensation. Thanks to the strong polariton nonlinearities, our system provides a photonic workbench for the quantum simulation of the interplay between interactions and spin-orbit effects, particularly when extended to two-dimensional lattices.
Journal/Review: PHYSICAL REVIEW X
Volume: 5 (1) Pages from: 11034-1 to: 11034-9
More Information: We thank J. W. Fleischer, M. Hafezi, G. Molina-Terriza, A. Poddubny, P. Voisin, and M. Wouters for fruitful discussions. This work was supported by the French RENATECH, the ANR-11-BS10-001 contract QUANDYDE, the ANR-11-LABX-0014 Ganex, the RTRA Triangle de la Physique (contract Boseflow1D), the FP7 ITNs Clermont4 (235114) and INDEX (289968), the FP7 IRSES Polaphen (246912), the POLATOM ESF Network, the Nanosaclay Labex, and the ERC grants Honeypol and QGBE.KeyWords: Quantum; Condensation; Solitons; StatesDOI: 10.1103/PhysRevX.5.011034ImpactFactor: 8.701Citations: 191data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-12-08References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here