Hydrodynamic versus collisionless dynamics of a one-dimensional harmonically trapped Bose gas

Year: 2016

Authors: De Rosi G., Stringari S.

Autors Affiliation: Univ Trento, INO CNR BEC Ctr, Via Sommarive 14, I-38123 Povo, Italy; Univ Trento, Dipartimento Fis, Via Sommarive 14, I-38123 Povo, Italy

Abstract: By using a sum-rule approach we investigate the transition between the hydrodynamic and the collisionless regime of the collective modes in a one-dimensional (1D) harmonically trapped Bose gas. Both the weakly interacting gas and the Tonks-Girardeau limits are considered. We predict that the excitation of the dipole compression mode is characterized in the high-temperature collisionless regime by a beating signal of two different frequencies (omega(z) and 3 omega(z)), while in the high-temperature collisional regime, the excitation consists of a single frequency (root 7 omega(z)). This behavior differs from the case of the lowest breathing mode whose excitation consists of a single frequency (2 omega(z)) in both regimes. Our predictions for the dipole compression mode open promising perspectives for the experimental investigation of collisional effects in 1D configurations.

Journal/Review: PHYSICAL REVIEW A

Volume: 94 (6)      Pages from: 063605-1  to: 063605-8

KeyWords: SCISSORS MODE; QUANTUM; INTEGRABILITY; BOSONS; SUPERFLUIDITY; SYSTEM
DOI: 10.1103/PhysRevA.94.063605

Citations: 10
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2023-01-29
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here