Scientific Results

Spin current generation and relaxation in a quenched spin-orbit-coupled Bose-Einstein condensate

Year: 2019

Authors: Li CH., Qu CL., Niffenegger RJ., Wang SJ., He MY., Blasing DB., Olson AJ., Greene CH., Lyanda-Geller Y., Zhou Q., Zhang CW., Chen YP.

Autors Affiliation: Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA;‎ Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA;‎ Univ Trento, INO CNR BEC Ctr, I-38123 Povo, Italy; Univ Trento, Dipartimento Fis, I-38123 Povo, Italy; Univ Colorado, JILA, Boulder, CO 80309 USA; Univ Colorado, Dept Phys, Boulder, CO 80309 USA;‎ Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA;‎ Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Hong Kong, Peoples R China: Purdue Univ, Purdue Quantum Ctr, W Lafayette, IN 47907 USA; MIT, Lincoln Lab, 244 Wood St, Lexington, MA 02421 USA; Kansas State Univ, Dept Phys, JR Macdonald Lab, Cardwell Hall, Manhattan, KS 66506 USA

Abstract: Understanding the effects of spin-orbit coupling (SOC) and many-body interactions on spin transport is important in condensed matter physics and spintronics. This topic has been intensively studied for spin carriers such as electrons but barely explored for charge-neutral bosonic quasiparticles (including their condensates), which hold promises for coherent spin transport over macroscopic distances. Here, we explore the effects of synthetic SOC (induced by optical Raman coupling) and atomic interactions on the spin transport in an atomic Bose-Einstein condensate (BEC), where the spin-dipole mode (SDM, actuated by quenching the Raman coupling) of two interacting spin components constitutes an alternating spin current. We experimentally observe that SOC significantly enhances the SDM damping while reducing the thermalization (the reduction of the condensate fraction). We also observe generation of BEC collective excitations such as shape oscillations. Our theory reveals that the SOC-modified interference, immiscibility, and interaction between the spin components can play crucial roles in spin transport.

Journal/Review: NATURE COMMUNICATIONS

Volume: 10      Pages from: 375-1  to: 375-14

KeyWords: COLLECTIVE EXCITATIONS; ROOM-TEMPERATURE; COULOMB DRAG; DYNAMICS; OSCILLATIONS; SPINTRONICS; TRANSPORT; MATTER; PHASE
DOI: 10.1038/s41467-018-08119-4

Citations: 10
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-12-05
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more