Scientific Results

Supersolid behavior of a dipolar Bose-Einstein condensate confined in a tube

Year: 2019

Authors: Roccuzzo S. M., Ancilotto F.

Autors Affiliation: Univ Trento, INO CNR BEC Ctr, I-238123 Povo, Italy; Univ Trento, Dipartitnento Fis, I-238123 Povo, Italy; Univ Padua, Dipartimento Fis & Astron Galileo Galilei, Via Marzolo 8, I-35122 Padua, Italy; Univ Padua, CNISM, Via Marzolo 8, I-35122 Padua, Italy; CNR IOM Dernocritos, Via Bonotnea 265, I-34136 Trieste, Italy

Abstract: Motivated by a recent experiment [L. Chomaz et al., Nat. Phys. 14, 442 (2018)], we perform numerical simulations of a dipolar Bose-Einstein condensate (BEC) in a tubular, periodic confinement at T = 0 within density functional theory, where the beyond-mean-field correction to the ground-state energy is included in the local density approximation. We study the excitation spectrum of the system by solving the corresponding Bogoliubov-de Gennes equations. The calculated spectrum shows a roton minimum, and the roton gap decreases by reducing the effective scattering length. As the roton gap disappears, the system spontaneously develops a periodic linear structure formed by denser clusters of atomic dipoles immersed in a dilute superfluid background. This structure shows the hallmarks of a supersolid system, i.e., (i) a finite nonclassical translational inertia along the tube axis and (ii) the appearance of two gapless modes, i.e., a phonon mode associated with density fluctuations and resulting from the translational discrete symmetry of the system, and a Nambu-Goldstone gapless mode corresponding to phase fluctuations, resulting from the spontaneous breaking of the gauge symmetry. A further decrease in the scattering length eventually leads to the formation of a periodic linear array of self-bound droplets


Volume: 99 (4)      Pages from: 041601-1  to: 041601-6

DOI: 10.1103/PhysRevA.99.041601

Citations: 42
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-12-05
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more