Beyond Lee-Huang-Yang description of self-bound Bose mixtures

Year: 2020

Authors: Ota M., Astrakharchik GE.

Autors Affiliation: Univ Trento, INO CNR BEC Ctr, I-38123 Trento, Italy;‎ Univ Trento, Dipartimento Fis, I-38123 Trento, Italy;‎ Univ Politecn Cataluna, Dept Fis, Campus Nord B4-B5, E-08034 Barcelona, Spain

Abstract: We investigate the properties of self-bound ultradilute Bose-Bose mixtures, beyond the Lee-Huang-Yang description. Our approach is based on the determination of the beyond mean-field corrections to the phonon modes of the mixture in a self-consistent way and calculation of the associated equation of state. The newly obtained ground state energies show excellent agreement with recent quantum Monte Carlo calculations, providing a simple and accurate description of the self-bound mixtures with contact type interaction. We further show numerical results for the equilibrium properties of the finite size droplet, by adjusting the Gross-Pitaevskii equation. Our analysis is extended to the one-dimensional mixtures where an excellent agreement with quantum Monte Carlo predictions is found for the equilibrium densities. Finally, we discuss the effects of temperature on the stability of the liquid phase.


Volume: 9 (2)      Pages from: 020-1  to: 020-18

DOI: 10.21468/SciPostPhys.9.2.020

Citations: 31
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2023-01-29
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here