Scientific Results

Acoustic black-hole bombs and scalar clouds in a photon-fluid model

Year: 2021

Authors: Ciszak M., Marino F.

Autors Affiliation: CNR-Istituto Nazionale di Ottica, Via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy; INFN, Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy

Abstract: Massive bosonic fields in the background of a Kerr black hole can either trigger superradiant instabilities(black-hole bombs) or form equilibrium configurations corresponding to pure bound states, known as stationary scalar clouds. Here, similar phenomena are shown to emerge in the fluctuation dynamics of a rotating photon-fluid model. In the presence of suitable vortex flows, the density fluctuations are governed by the massive Klein-Gordon equation on a (2+1) curved spacetime, possessing an ergoregion and an event horizon. We report on superradiant instabilities originating from quasibound phonon states trapped by the vortex background and, remarkably, on the existence of stationary modes in synchronous rotation with the horizon. These represent the acoustic counterpart of astrophysical scalar clouds. Our system offers a promising platform for analogue gravity experiments on superradiant instabilities of massive bosons and black-hole-field equilibrium configurations.

Journal/Review: PHYSICAL REVIEW D

Volume: 103 (4)      Pages from: 045004-1  to: 045004-11

KeyWords: photon fluid, analogue gravity, quasi-bound states, scalar clouds, black holes
DOI: 10.1103/PhysRevD.103.045004

Citations: 5
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-11-28
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more