Scientific Results

Heisenberg-Limited Noisy Atomic Clock Using a Hybrid Coherent and Squeezed State Protocol

Year: 2020

Authors: Pezzè L., Smerzi A.

Autors Affiliation: INO CNR, QSTAR, Largo Enrico Fermi 2, I-50125 Florence, Italy; LENS, Largo Enrico Fermi 2, I-50125 Florence, Italy

Abstract: We propose a hybrid quantum-classical atomic clock where the interrogation of atoms prepared in a spin-coherent (or weakly squeezed) state is used to feed back one or more highly spin-squeezed atomic states toward their optimal phase-sensitivity point. The hybrid clock overcomes the stability of a single Ramsey clock using coherent or optimal spin-squeezed states and reaches a Heisenberg-limited stability while avoiding nondestructive measurements. When optimized with respect to the total number of particles, the protocol surpasses the state-of-the-art proposals that use Greenberger-Home-Zeilinger or NOON states. We compare analytical predictions with numerical simulations of clock operations, including correlated 1/f local oscillator noise.

Journal/Review: PHYSICAL REVIEW LETTERS

Volume: 125 (21)      Pages from: 210503-1  to: 210503-7

KeyWords: PROJECTION NOISE; QUANTUM; ENTANGLEMENT; GENERATION; TIMES
DOI: 10.1103/PhysRevLett.125.210503

Citations: 4
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-12-05
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more