A scalable realization of local U(1) gauge invariance in cold atomic mixtures

Year: 2020

Authors: Mil A., Zache TV., Hegde A., Xia A., Bhatt RP., Oberthaler MK., Hauke P., Berges J., Jendrzejewski F.

Autors Affiliation: Heidelberg Univ, Kirchhoff Inst Phys, Neuenheimer Feld 227, D-69120 Heidelberg, Germany; Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany; Univ Trento, INO CNR BEC Ctr, Via Sommarive 14, I-38123 Trento, Italy; Univ Trento, Dept Phys, Via Sommar 14, I-38123 Trento, Italy

Abstract: In the fundamental laws of physics, gauge fields mediate the interaction between charged particles. An example is the quantum theory of electrons interacting with the electromagnetic field, based on U(1) gauge symmetry. Solving such gauge theories is in general a hard problem for classical computational techniques. Although quantum computers suggest a way forward, large-scale digital quantum devices for complex simulations are difficult to build. We propose a scalable analog quantum simulator of a U(1) gauge theory in one spatial dimension. Using interspecies spin-changing collisions in an atomic mixture, we achieve gauge-invariant interactions between matter and gauge fields with spin- and species-independent trapping potentials. We experimentally realize the elementary building block as a key step toward a platform for quantum simulations of continuous gauge theories.

Journal/Review: SCIENCE

Volume: 367      Pages from: 1128  to: 1130

KeyWords: QUANTUM SIMULATION; DYNAMICS; MODELS; GASES
DOI: 10.1126/science.aaz5312

Citations: 136
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-04-14
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here