Scientific Results

Critical transport and vortex dynamics in a thin atomic Josephson junction

Year: 2020

Authors: Xhani K., Neri E., Galantucci L., Scazza F., Burchianti A., Lee K.-L., Barenghi C.F., Trombettoni A., Inguscio M., Zaccanti M., Roati G., Proukakis N.P.,

Autors Affiliation: Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; European Laboratory for Non-Linear Spectroscopy (LENS), Università di Firenze, 50019 Sesto Fiorentino, Italy; Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy; Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), 50019 Sesto Fiorentino, Italy; CNR-IOM DEMOCRITOS Simulation Center and SISSA, Via Bonomea 265, I-34136 Trieste, Italy; Department of Engineering, Campus Bio-Medico University of Rome, 00128 Rome, Italy

Abstract: We study the onset of dissipation in an atomic Josephson junction between Fermi superfluids in the molecular Bose-Einstein condensation limit of strong attraction. Our simulations identify the critical population imbalance and the maximum Josephson current delimiting dissipationless and dissipative transport, in quantitative agreement with recent experiments. We unambiguously link dissipation to vortex ring nucleation and dynamics, demonstrating that quantum phase slips are responsible for the observed resistive current. Our work directly connects microscopic features with macroscopic dissipative transport, providing a comprehensive description of vortex ring dynamics in three-dimensional inhomogeneous constricted superfluids at zero and finite temperatures.

Journal/Review: PHYSICAL REVIEW LETTERS

Volume: 124      Pages from: 045301-1  to: 045301-6

KeyWords: Phase Slips, Quantum Transport, Vortices in Superfluids
DOI: https://doi.org/10.1103/PhysRevLett.124.045301