Scientific Results

Quantum solitons in spin-orbit-coupled Bose-Bose mixtures

Year: 2019

Authors: Tononi A., Wang YM., Salasnich L.

Autors Affiliation: Univ Padua, Dipartimento Fis & Astron Galileo Galilei, Via Marzolo 8, I-35131 Padua, Italy; Shanxi Univ, Sch Phys & Elect Engn, Taiyuan 030006, Shanxi, Peoples R China; Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China; CNR, INO, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy

Abstract: Recent experimental and theoretical results show that weakly interacting atomic Bose-Bose mixtures with attractive interspecies interaction are stabilized by beyond-mean-field effects. Here we consider the peculiar properties of these systems in a strictly one-dimensional configuration, taking also into account the nontrivial role of spin-orbit and Rabi couplings. We show that when the value of inter- and intraspecies interaction strengths are such that mean-field contributions to the energy cancel, a self-bound bright soliton fully governed by quantum fluctuations exists. We derive the phase diagram of the phase transition between a single-peak soliton and a multipeak (striped) soliton, produced by the interplay between spin-orbit, Rabi couplings and beyond-mean-field effects, which also affect the breathing mode frequency of the atomic cloud. Finally, we prove that a phase imprinting of the single-peak soliton leads to a self-confined propagating solitary wave even in the presence of spin-orbit coupling.


Volume: 99 (6)      Pages from: 063618-1  to: 063618-5

DOI: 10.1103/PhysRevA.99.063618

Citations: 17
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-12-05
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more