Scientific Results

Ultra-fast force-clamp spectroscopy data on the interaction between skeletal muscle myosin and actin

Year: 2019

Authors: Maffei M., Beneventi D., Canepari M., Bottinelli R., Pavone FS., Capitanio M.

Autors Affiliation: Univ Pavia, Dept Mol Med, Pavia, Italy; LENS European Lab Nonlinear Spect, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy; Univ Florence, Dept Phys & Astron, Via Sansone 1, I-50019 Sesto Fiorentino, Italy; CNR, Natl Inst Opt, Largo Fermi 6, I-50125 Florence, Italy

Abstract: Ultrafast force-clamp spectroscopy is a single molecule technique based on laser tweezers with sub-millisecond and sub-nanometer resolution. The technique has been successfully applied to investigate the rapid conformational changes that occur when a myosin II motor from skeletal muscle interacts with an actin filament. Here, we share data on the kinetics of such interaction and experimental records collected under different forces [1]. The data can be valuable for researchers interested in the mechanosensitive properties of myosin II, both from an experimental and modeling point of view. The data is related to the research article “ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke” [2]. (C) 2019 The Author(s). Published by Elsevier Inc.

Journal/Review:

Volume: 25      Pages from: 104017-1  to: 104017-5

KeyWords: Optical tweezers; Force-clamp spectroscopy; Myosin; Single molecule biophysics
DOI: 10.1016/j.dib.2019.104017

Connecting to view paper tab on IsiWeb: Click here