Scientific Results

Combined Rehabilitation Promotes the Recovery of Structural and Functional Features of Healthy Neuronal Networks after Stroke

Year: 2019

Authors: Allegra Mascaro LM., Conti E., Lai S., Di Giovanna AP., Spalletti C., Alia C., Panarese A., Scaglione A., Sacconi L., Micera S., Caleo M., Pavone FS.

Autors Affiliation: CNR, Neurosci Inst, I-56124 Pisa, Italy; Florence, European Lab Nonlinear Spect, I-50019 Sesto Fiorentino, Italy; Univ Florence, Dept Phys & Astron, I-50019 Sesto Fiorentino, Italy; Scuola Super Sant Anna, BioRobot Inst, Translat Neural Engn Area, I-56127 Pisa, Italy; CNR, Natl Inst Opt, I-50019 Sesto Fiorentino, Italy; Ecole Polytech Fed Lausanne, Ctr Neuroprosthet, Bertarelli Fdn Chair Translat NeuroEngn, CH-1015 Lausanne, Switzerland; Ecole Polytech Fed Lausanne, Inst Bioengn, CH-1015 Lausanne, Switzerland; Univ Padua, Dept Biomed Sci, I-35131 Padua, Italy

Abstract: Rehabilitation is considered the most effective treatment for promoting the recovery of motor deficits after stroke. One of the most challenging experimental goals is to unambiguously link brain rewiring to motor improvement prompted by rehabilitative therapy. Previous work showed that robotic training combined with transient inactivation of the contralesional cortex promotes a generalized recovery in a mouse model of stroke. Here, we use advanced optical imaging and manipulation tools to study cortical remodeling induced by this rehabilitation paradigm. We show that the stabilization of peri-infarct synaptic contacts accompanies increased vascular density induced by angiogenesis. Furthermore, temporal and spatial features of cortical activation recover toward pre-stroke conditions through the progressive formation of a new motor representation in the peri-infarct area. In the same animals, we observe reinforcement of inter-hemispheric connectivity. Our results provide evidence that combined rehabilitation promotes the restoration of structural and functional features distinctive of healthy neuronal networks.

Journal/Review:

Volume: 28 (13)      Pages from: 3474  to: 3474

KeyWords: DENDRITIC PLASTICITY; MOTOR CORTEX; BEHAVIORAL RECOVERY; LONG-TERM; BRAIN; CONNECTIVITY; STIMULATION; FORELIMB; REVEALS; HEMODYNAMICS
DOI: 10.1016/j.celrep.2019.08.062

Connecting to view paper tab on IsiWeb: Click here