Quench dynamics of an ultracold two-dimensional Bose gas

Year: 2019

Authors: Comaron P., Larcher F., Dalfovo F., Proukakis N. P.

Autors Affiliation: Newcastle Univ, Joint Quantum Ctr Durham Newcastle, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England; Univ Trento, INO CNR BEC Ctr, Via Sommar 14, I-38123 Trento, Italy; Univ Trento, Dipartimento Fis, Via Sommar 14, I-38123 Trento, Italy

Abstract: We study the dynamics of a two-dimensional Bose gas after an instantaneous quench of an initially ultracold thermal atomic gas across the Berezinskii-Kosterlitz-Thouless phase transition, confirming via stochastic simulations that the system undergoes phase-ordering kinetics and fulfills the dynamical scaling hypothesis at late-time dynamics. Specifically, we find in that regime the vortex number decaying in time as < N-v > proportional to t(-1), consistent with a dynamical critical exponent z approximate to 2 for both temperature and interaction quenches. Focusing on finite-size boxlike geometries, we demonstrate that such an observation is within current experimental reach.


Volume: 100 (3)      Pages from: 033618-1  to: 033618-10

DOI: 10.1103/PhysRevA.100.033618

Citations: 10
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-08-07
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here