Scientific Results

Narrow Line Width Quantum Emitters in an Electron-Beam-Shaped Polymer

Year: 2019

Authors: Ciancico C., Schadler KG., Pazzagli S., Colautti M., Lombardi PE., Osmond J., Dore C., Mihi A., Ovvyan AP., Pernice WHP., Berretti E., Lavacchi A., Toninelli C., Koppens FHL., Reserbat-Plantey A.

Autors Affiliation: Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain; LENS, Via Nello Carrara 1, I-50019 Sesto Fiorentino, FI, Italy; CNR INO, Via Nello Carrara 1, I-50019 Sesto Fiorentino, FI, Italy; Univ Firenze, Dipartimento Fis & Astron, Via Sansone 1, I-50019 Sesto Fiorentino, FI, Italy; CSIC, ICMAB, Campus UAB, Bellaterra 08193, Barcelona, Spain; Westfalische Wilhelms Univ Miinster, Inst Phys, Heisenbergstr 11, D-48149 Munster, Germany; CNR, Inst Chem OrganoMetall Cpds ICCOM, Via Madonna del Piano, I-50019 Sesto Fiorentino, FI, Italy; QSTAR, Largo Fermi 2, I-50125 Florence, Italy; ICREA, Barcelona 08010, Spain

Abstract: Solid-state single photon sources (SPSs) with narrow line width play an important role in many leading quantum technologies. Within the wide range of SPSs studied to date, single fluorescent molecules hosted in organic crystals stand out as bright, photostable SPSs with a lifetime-limited optical resonance at cryogenic temperatures. Furthermore, recent results have demonstrated that photostability and narrow line widths are still observed from single molecules hosted in a nanocrystalline environment, which paves the way for their integration with photonic circuitry. Polymers offer a compatible matrix for embedding nanocrystals and provide a versatile yet low-cost approach for making nanophotonic structures on chip that guide light and enhance coupling to nanoscale emitters. Here, we present a deterministic nanostructuring technique based on electron-beam lithography for shaping polymers with embedded single molecules. Our approach provides a direct means of structuring the nanoscale environment of narrow line width emitters while preserving their emission properties.

Journal/Review: ACS PHOTONICS

Volume: 6 (12)      Pages from: 3120  to: 3125

KeyWords: single photon source; quantum emitters; single molecule; electron beam lithography; nanophotonic devices; on-chip quantum optics
DOI: 10.1021/acsphotonics.9b01145

Connecting to view paper tab on IsiWeb: Click here