Macroscopic quantum entanglement

Year: 2008

Authors: Cataliotti F.S., De Martini F., Sciarrino F., Spagnolo N., Vitelli C.

Autors Affiliation: Dipartimento di Energetica, LENS, Università di Firenze, via N. Carrara 1, I-50019 Sesto (FI), Italy; Dipartimento di Fisica, Università La Sapienza, Consorzio Nazionale Interuniversitario Per Le Scienze Fisiche Della Materia, P.le Aldo Moro 2, Roma, 00185, Italy; Accademia Nazionale dei Lincei, Roma, Italy; Centro di Studi e Ricerche Enrico Fermi, Via Panisperna 89/A, Compendio del Viminale, Roma 00184, Italy

Abstract: In the present work we propose to realize a macroscopic light-matter entangled state, obtained by the interaction of a multiphoton quantum superposition with a BEC system. The multiphoton quantum state is generated by a quantum-injected optical parametric amplifier (QI-OPA) seeded by a single-photon belonging to an EPR entangled pair and interacts with a Mirror-BEC shaped as a Bragg interference structure. The overall process will realize an entangled macroscopic quantum superposition involving a \”microscopic\” single-photon state of polarization and the coherent \”macroscopic\” displacement of the BEC structure acting in space-like separated distant places. This hybrid photonic-atomic system could open new perspectives on the possibility of coupling the amplified radiation with an atomic ensemble, a Bose-Einstein condensate, in order to implement innovative quantum interface between light and matter.

Conference title:

More Information: This work was supported by the PRIN 2005 of MIUR and project INNESCO 2006 of CNISM.
KeyWords: Atomic physics; Atoms; Bose-Einstein condensation; Light amplifiers; Microwave amplifiers; Mirrors; Multiphoton processes; Parametric amplifiers; Parametric devices; Particle beams; Photons; Quantum entanglement; Quantum optics; Steam condensers; Vegetation, Atomic ensembles; Atomic systems; Einstein condensates; Entangled states; Interference structures; Macroscopic quantum; Multiphoton quantum; Multiphoton quantum superpositions; Optical parametric amplifiers; Photon states; Quantum interfaces, Quantum theory
DOI: 10.1117/12.797927