Risultati scientifici

Multipartite Entanglement at Finite Temperature

Anno: 2018

Autori: Gabbrielli M., Smerzi A., Pezzè L.

Affiliazione autori: INO CNR, QSTAR, Largo Enrico Fermi 2, I-50125 Florence, Italy

Abstract: The interplay of quantum and thermal fluctuations in the vicinity of a quantum critical point characterizes the physics of strongly correlated systems. Here we investigate this interplay from a quantum information perspective presenting the universal phase diagram of the quantum Fisher information at a quantum phase transition. Different regions in the diagram are identified by characteristic scaling laws of the quantum Fisher information with respect to temperature. This feature has immediate consequences on the thermal robustness of quantum coherence and multipartite entanglement. We support the theoretical predictions with the analysis of paradigmatic spin systems showing symmetry-breaking quantum phase transitions and free-fermion models characterized by topological phases. In particular we show that topological systems are characterized by the survival of large multipartite entanglement, reaching the Heisenberg limit at finite temperature.

Giornale/Rivista: SCIENTIFIC REPORTS

Volume: 8      Da Pagina: 15663-1  A: 15663-18

Parole chiavi: Bose-Einstein condensate; infinitely coordinated systems; many-body system; quantum criticality; fisher information
DOI: 10.1038/s41598-018-31761-3

Citazioni: 26
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2021-11-28
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more