Quantum Fluctuations and Vortex-Antivortex Unbinding in the 2D Bcs-Bec Crossover

Anno: 2016

Autori: Salasnich L., Bighin G.

Affiliazione autori: Univ Padua, Dipartimento Fis & Astron Galileo Galilei, Padua, Italy; INO CNR, Sez Sesto Fiorentino, Padua, Italy

Abstract: Very recently, quasi two-dimensional (2D) systems made of attractive fermionic alkali-metal atoms with a widely tunable interaction due to Fano-Feshbach resonances have been realized. In this way, it has been achieved the 2D crossover from the Bardeen-Cooper-Schrieffer regime of weakly-interacting Cooper pairs to the Bose-Einstein condensate regime strongly bound dimers. These experiments pave the way to the investigation of 2D strongly-interacting attractive fermions during the Berezinskii-Kosterlitz-Thouless (BKT) transition from a low-temperature superfluid phase characterized by quasi-condensation to a high-temperature normal phase, where vortex proliferation driven by quantum and thermal fluctuations completely destroys superfluidity. In this paper, we discuss our preliminar theoretical results on the behavior of the BKT critical temperature across the crossover. Our microscopic calculations are based on functional integration taking into account renormalized Gaussian fluctuations and the crucial 2D effect of vortex-antivortex unbinding.

Giornale/Rivista: JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM

Volume: 29 (12)      Da Pagina: 3103  A: 3106

Parole chiavi: BCS-BEC crossover; Ultracold atoms; Dimensional regularization
DOI: 10.1007/s10948-016-3830-6

Citazioni: 7
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-04-21
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui