Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion

Anno: 1997

Autori: Soto-Crespo J.M., Akhmediev N.N., Afanasjev V.V., Wabnitz S.

Affiliazione autori: Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Serrano 121, Madrid, 28006, Spain; Optical Sciences Centre, The Australian National University, Canberra, ACT, 0200, Australia; Laboratoire de Physique, Universitéde Bourgogne, Avenue Alain Savary, Dijon, 21004, France

Abstract: Time-localized solitary wave solutions of the one-dimensional complex Ginzburg-Landau equation (CGLE) are analyzed for the case of normal group-velocity dispersion. Exact soliton solutions are found for both the cubic and the quintic CGLE. The stability of these solutions is investigated numerically. The regions in the parameter space in which stable pulselike solutions of the quintic CGLE exist are numerically determined. These regions contain subspaces where analytical solutions may be found. An investigation of the role of group-velocity dispersion changes in magnitude and sign on the spectral and temporal characteristics of the stable pulse solutions is also carried out.

Giornale/Rivista: PHYSICAL REVIEW E

Volume: 55 (4)      Da Pagina: 4783  A: 4796

Parole chiavi: Traveling-wave convection; Fiber ring laser; Mode-locked lasers
DOI: 10.1103/PhysRevE.55.4783

Citazioni: 146
dati da “WEB OF SCIENCE” (of Thomson Reuters) aggiornati al: 2024-06-16
Riferimenti tratti da Isi Web of Knowledge: (solo abbonati)
Link per visualizzare la scheda su IsiWeb: Clicca qui
Link per visualizzare la citazioni su IsiWeb: Clicca qui