Image Processing

Face Recognition Using Principal Components Analysis (PCA)

Principal Component Analysis (PCA)

- Pattern recognition in high-dimensional spaces
 - Problems arise when performing recognition in a high-dimensional space (curse of dimensionality).
 - Significant improvements can be achieved by first mapping the data into a lower-dimensional sub-space.

\[
x = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{bmatrix} \rightarrow \text{reduce dimensionality} \rightarrow y = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_K \end{bmatrix} \quad (K \ll N)
\]

- The goal of PCA is to reduce the dimensionality of the data while retaining as much information as possible in the original dataset.
Principal Component Analysis (PCA)

- Dimensionality reduction

 - PCA allows us to compute a linear transformation that maps data from a high dimensional space to a lower dimensional sub-space.

$$\mathbf{y} = \mathbf{T} \mathbf{x}$$ where

$$\mathbf{T} = \begin{bmatrix}
 t_{11} & t_{12} & \ldots & t_{1N} \\
 t_{21} & t_{22} & \ldots & t_{2N} \\
 \vdots & \vdots & \ddots & \vdots \\
 t_{K1} & t_{K2} & \ldots & t_{KN}
\end{bmatrix}$$

$$b_1 = t_{11}a_1 + t_{12}a_2 + \ldots + t_{1N}a_N$$

$$b_2 = t_{21}a_1 + t_{22}a_2 + \ldots + t_{2N}a_N$$

$$\ldots$$

$$b_K = t_{K1}a_1 + t_{K2}a_2 + \ldots + t_{KN}a_N$$
Principal Component Analysis (PCA)

- Lower dimensionality basis
 - Approximate vectors by finding a basis in an appropriate lower dimensional space.

 (1) Higher-dimensional space representation:

 \[x = a_1 v_1 + a_2 v_2 + \cdots + a_N v_N \]

 \[v_1, v_2, \ldots, v_N \] is a basis of the \(N \)-dimensional space

 (2) Lower-dimensional space representation:

 \[\hat{x} = b_1 u_1 + b_2 u_2 + \cdots + b_K u_K \]

 \[u_1, u_2, \ldots, u_K \] is a basis of the \(K \)-dimensional space

 - Note: if both bases have the same size \((N = K) \), then \(x = \hat{x} \)
Principal Component Analysis (PCA)

• Information loss
 - Dimensionality reduction implies information loss!
 - PCA preserves as much information as possible, that is, it minimizes the error:
 \[\| x - \hat{x} \| \]

• How should we determine the best lower dimensional subspace?

The best low-dimensional space can be determined by the "best" eigenvectors of the covariance matrix of x (i.e., the eigenvectors corresponding to the "largest" eigenvalues -- also called "principal components").
Principal Component Analysis (PCA)

- **Methodology**
 - Suppose x_1, x_2, \ldots, x_M are $N \times 1$ vectors

\[
\text{Step 1: } \bar{x} = \frac{1}{M} \sum_{i=1}^{M} x_i
\]

Step 2: subtract the mean: $\Phi_i = x_i - \bar{x}$ (i.e., center at zero)

Step 3: form the matrix $A = [\Phi_1 \ \Phi_2 \ \cdots \ \Phi_M]$ ($N \times M$ matrix), then compute:

\[
C = \frac{1}{M} \sum_{n=1}^{M} \Phi_n \Phi_n^T = \frac{1}{M} AA^T
\]

(sample covariance matrix, $N \times N$, characterizes the scatter of the data)

Step 4: compute the eigenvalues of C: $\lambda_1 > \lambda_2 > \cdots > \lambda_N$

Step 5: compute the eigenvectors of C: u_1, u_2, \ldots, u_N
Principal Component Analysis (PCA)

- Methodology – cont.

- Since \(C \) is symmetric, \(u_1, u_2, \ldots, u_N \) form a basis, (i.e., any vector \(x \) or actually \(x - \bar{x} \), can be written as a linear combination of the eigenvectors):

\[
x - \bar{x} = b_1 u_1 + b_2 u_2 + \cdots + b_N u_N = \sum_{i=1}^{N} b_i u_i \quad b_i = \frac{(x - \bar{x}) u_i}{(u_i, u_i)}
\]

Step 6: \text{(dimensionality reduction step)} keep only the terms corresponding to the \(K \) largest eigenvalues:

\[
\hat{x} - \bar{x} = \sum_{i=1}^{K} b_i u_i \quad \text{where } K \ll N
\]

- The representation of \(\hat{x} - \bar{x} \) into the basis \(u_1, u_2, \ldots, u_K \) is thus

\[
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_K
\end{bmatrix}
\]
Principal Component Analysis (PCA)

- Linear transformation implied by PCA
 - The linear transformation $\mathbb{R}^N \to \mathbb{R}^K$ that performs the dimensionality reduction is:

$$
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_K \\
\end{bmatrix}
= \begin{bmatrix}
 u_1^T \\
 u_2^T \\
 \vdots \\
 u_K^T \\
\end{bmatrix}
(x - \bar{x}) = U^T(x - \bar{x})
$$

(i.e., simply computing coefficients of linear expansion)
Principal Component Analysis (PCA)

- Geometric interpretation
 - PCA projects the data along the directions where the data varies the most.
 - These directions are determined by the eigenvectors of the covariance matrix corresponding to the largest eigenvalues.
 - The magnitude of the eigenvalues corresponds to the variance of the data along the eigenvector directions.
Principal Component Analysis (PCA)

• How to choose K (i.e., number of principal components) ?
 - To choose K, use the following criterion:

\[
\frac{\sum_{i=1}^{K} \lambda_i}{\sum_{i=1}^{N} \lambda_i} > \text{Threshold} \quad \text{(e.g., 0.9 or 0.95)}
\]

 - In this case, we say that we “preserve” 90% or 95% of the information in our data.

 - If K=N, then we “preserve” 100% of the information in our data.
Principal Component Analysis (PCA)

• What is the error due to dimensionality reduction?
 – The original vector x can be reconstructed using its principal components:

 $$\hat{x} - \bar{x} = \sum_{i=1}^{K} b_i u_i \text{ or } \hat{x} = \sum_{i=1}^{K} b_i u_i + \bar{x}$$

 – PCA minimizes the reconstruction error:

 $$e = \|x - \hat{x}\|$$

 – It can be shown that the error is equal to:

 $$e = \frac{1}{2} \sum_{i=K+1}^{N} \lambda_i$$
Principal Component Analysis (PCA)

• Standardization
 - The principal components are dependent on the *units* used to measure the original variables as well as on the *range* of values they assume.
 - You should *always* standardize the data prior to using PCA.
 - A common standardization method is to transform all the data to have zero mean and unit standard deviation:

\[
\frac{x_i - \mu}{\sigma} \quad (\mu \text{ and } \sigma \text{ are the mean and standard deviation of } x_i's)
\]
Application to Faces

• Computation of low-dimensional basis (i.e., eigenfaces):

Step 1: obtain face images $I_1, I_2, ..., I_M$ (training faces)

(very important: the face images must be centered and of the same size)

Step 2: represent every image I_i as a vector Γ_i
Application to Faces

• Computation of the eigenfaces – cont.

Step 3: compute the average face vector Ψ:

$$\Psi = \frac{1}{M} \sum_{i=1}^{M} \Gamma_i$$

Step 4: subtract the mean face:

$$\Phi_i = \Gamma_i - \Psi$$

Step 5: compute the covariance matrix C:

$$C = \frac{1}{M} \sum_{n=1}^{M} \Phi_n \Phi_n^T = \frac{1}{M} AA^T \quad (N^2 \times N^2 \text{ matrix})$$

where $A = [\Phi_1 \ \Phi_2 \ \cdots \ \Phi_M] \quad (N^2 \times M \text{ matrix})$
Application to Faces

• Computation of the eigenfaces – cont.

Step 6: compute the eigenvectors \(u_i \) of \(AA^T \)

\[
AA^T u_i = \lambda_i u_i
\]

The matrix \(AA^T \) is very large --> not practical !!

Step 6.1: consider the matrix \(A^T A \) (MxM matrix)

Step 6.2: compute the eigenvectors \(v_i \) of \(A^T A \)

\[
A^T A v_i = \mu_i v_i
\]

What is the relationship between \(u_i \) and \(v_i \)?

\[
A^T A v_i = \mu_i v_i \Rightarrow AA^T A v_i = \lambda_i A v_i \Rightarrow
\]

\[
u_i = A v_i \quad \text{and} \quad \lambda_i = \mu_i
\]

Thus, \(AA^T \) and \(A^T A \) have the same eigenvalues and their eigenvectors are related as follows: \(u_i = A v_i \) !!
Application to Faces

• Computation of the eigenfaces – cont.

Note 1: AA^T can have up to N^2 eigenvalues and eigenvectors.

Note 2: $A^T A$ can have up to M eigenvalues and eigenvectors.

Note 3: The M eigenvalues of $A^T A$ (along with their corresponding eigenvectors) correspond to the M largest eigenvalues of AA^T (along with their corresponding eigenvectors).

Step 6.3: compute the M best eigenvectors of AA^T: $u_i = Av_i$

(important: normalize u_i such that $\|u_i\| = 1$)

Step 7: keep only K eigenvectors (corresponding to the K largest eigenvalues)
Eigenfaces example

Training images
Eigenfaces example

Top eigenvectors: u_1, \ldots, u_k

Mean: μ
Application to Faces

- Representing faces onto this basis

- Each face (minus the mean) Φ_i in the training set can be represented as a linear combination of the best K eigenvectors:

$$\hat{\Phi}_i - mean = \sum_{j=1}^{K} w_j u_j, \quad (w_j = u_j^T \Phi_i)$$

(we call the u_j’s eigenfaces)

Face reconstruction:
Eigenfaces

• **Case Study**: Eigenfaces for Face Detection/Recognition

• **Face Recognition**
 - The simplest approach is to think of it as a template matching problem
 - Problems arise when performing recognition in a high-dimensional space.
 - Significant improvements can be achieved by first mapping the data into a lower dimensionality space.
Eigenfaces

- **Face Recognition Using Eigenfaces**

 - Given an unknown face image Γ (centered and of the same size like the training faces) follow these steps:

 Step 1: normalize Γ: $\Phi = \Gamma - \Psi$

 Step 2: project on the eigenspace

 $$\hat{\Phi} = \sum_{i=1}^{K} w_i u_i \quad (w_i = u_i^T \Phi) \quad (where \|u_i\| = 1)$$

 Step 3: represent Φ as: $\Omega = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_K \end{bmatrix}$

 Step 4: find $e_r = \min_l \|\Omega - \Omega^l\|$ where $\|\Omega - \Omega^l\| = \sum_{i=1}^{K} (w_i - w_i^l)^2$

 Step 5: if $e_r < T_r$, then Γ is recognized as face l from the training set.
Eigenfaces

- **Face Recognition** Using Eigenfaces – cont.
 - The distance e_r is called *distance within face space (difs)*
 - The *Euclidean distance* can be used to compute e_r, however, the *Mahalanobis distance* has shown to work better:

\[
\| \Omega - \Omega^k \| = \sum_{i=1}^{K} (w_i - w_i^k)^2 \quad \text{Euclidean distance}
\]

\[
\| \Omega - \Omega^k \| = \sum_{i=1}^{K} \frac{1}{\lambda_i} (w_i - w_i^k)^2 \quad \text{Mahalanobis distance}
\]

(variations along all axes are treated as equally significant)
Face detection and recognition

Detection

Recognition

“Sally”
Eigenfaces

- Face Detection Using Eigenfaces

- Given an unknown image Γ

 Step 1: compute $\Phi = \Gamma - \Psi$

 Step 2: compute $\hat{\Phi} = \sum_{i=1}^{K} w_i u_i$ ($w_i = u_i^T \Phi$) \((\text{where} \|u_i\| = 1) \)

 Step 3: compute $e_d = \|\Phi - \hat{\Phi}\|

 Step 4: if $e_d < T_d$, then Γ is a face.

- The distance e_d is called distance from face space (dffs)
Eigenfaces

- Reconstruction of faces and non-faces

Reconstructed face looks like a face.

Reconstructed non-face looks like a face again!
Eigenfaces

• **Face Detection** Using Eigenfaces – cont.

Case 1: in face space AND close to a given face
Case 2: in face space but NOT close to any given face
Case 3: not in face space AND close to a given face
Case 4: not in face space and NOT close to any given face
Reconstruction using partial information

- Robust to partial face occlusion.
Eigenfaces

- Face detection, tracking, and recognition

Visualize dffs:

\[e_d = \| \Phi - \hat{\Phi} \| \]
Limitations

• **Background changes** cause problems
 - De-emphasize the outside of the face (e.g., by multiplying the input image by a 2D Gaussian window centered on the face).

• **Light changes** degrade performance
 - Light normalization helps.

• **Performance decreases quickly with changes to face size**
 - Multi-scale eigenspaces.
 - Scale input image to multiple sizes.

• **Performance decreases with changes to face orientation** (but not as fast as with scale changes)
 - Plane rotations are easier to handle.
 - Out-of-plane rotations are more difficult to handle.
Limitations

- Not robust to misalignment
Limitations

- PCA assumes that the data follows a Gaussian distribution (mean μ, covariance matrix Σ)

The shape of this dataset is not well described by its principal components.
Limitations

- PCA is not always an optimal dimensionality-reduction procedure for classification purposes: