INO
CNR
vai_a_storia   vai_a_organizzazione   vai_a_sedi   vai_a_personale   Area Riservata
    English English Version  
 
 

Finely Tuned SnO2 Nanoparticles for Efficient Detection of Reducing and Oxidizing Gases: The Influence of Alkali Metal Cation on Gas-Sensing Properties

  Articoli su Riviste JCR/ISI  (anno 2018)

Autori:  Lee S-H., Galstyan V., Ponzoni A., Gonzalo-Juan I., Riedel R., Dourges M.-A., Nicolas Y., Toupance T

Affiliazione Autori:  Institut des Sciences Moléculaires, Université de Bordeaux, UMR 5255 CNRS, Talence 33405, France; Fachbereich Material- und Geowissenshaften, Technische Universität Darmstadt, Darmstadt D-64287, Germany; Department of information Engineering, University of Brescia, SENSOR Laboratory, Brescia 25133, Italy; National Research Council (CNR), National Institute of Optics (INO) − Unit of Brescia, Brescia 25123, Italy

Riassunto:  Tin dioxide (SnO2) nanoparticles were straightforwardly synthesized using an easily scaled-up liquid route that involves the hydrothermal treatment, either under acidic or basic conditions, of a commercial tin dioxide particle suspension including potassium counterions. After further thermal post-treatment, the nanomaterials have been thoroughly characterized by Fourier transform infrared and Raman spectroscopy, powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and nitrogen sorption porosimetry. Varying pH conditions and temperature of the thermal treatment provided cassiterite SnO2 nanoparticles with crystallite sizes ranging from 7.3 to 9.7 nm and Brunauer−Emmett−Teller surface areas ranging from 61 to 106 m2.g−1, acidic conditions favoring potassium cation removal. Upon exposure to a reducing gas (H2, CO, and volatile organic compounds such as ethanol and acetone) or oxidizing gas (NO2), layers of these SnO2 nanoparticles led to highly sensitive, reversible, and reproducible responses. The sensing results were discussed in regard to the crystallite size, specific area, valence band energy, Debye length, and chemical composition. Results highlight the impact of the counterion residuals, which affect the gas-sensing performance to an extent much higher than that of size and surface area effects. Tin dioxide nanoparticles prepared under acidic conditions and calcined in air showed the best sensing performances because of lower amount of potassium cations and higher crystallinity, despite the lower surface area.

Rivista/Giornale:  ACS APPLIED MATERIALS & INTERFACES
Volume n.:  10 (12)      Pagine da: 10173  a: 10184
Parole chiave: SnO2 nanoparticles - gas sensing
DOI: 10.1021/acsami.7b18140


INO © Istituto Nazionale di Ottica - Largo Fermi 6, 50125 Firenze | Tel. 05523081 Fax 0552337755 - P.IVA 02118311006     P.E.C.    Info