INO
CNR
vai_a_storia   vai_a_organizzazione   vai_a_sedi   vai_a_personale   Area Riservata
    English English Version  
 
 

Long-lived contrails and convective cirrus above the tropical tropopause

  Articoli su Riviste JCR/ISI  (anno 2017)

Autori:  Schumann U., Kiemle C., Schlager H., Weigel R., Borrmann S., D'Amato F., Krämer M., Matthey R., Protat A., Voigt C., Volk M

Affiliazione Autori:  Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, 82234 Oberpfaffenhofen, Germany; Johannes-Gutenberg-University, Institute for Atmospheric Physics, Mainz, Germany; Max-Planck-Institute for Chemistry, Mainz, Germany; Istituto Nazionale di Ottica, CNR, Florence, Italy; Forschungszentrum Jülich, Institut für Energie und Klimaforschung (IEK-7), Jülich, Germany; Université de Neuchâtel, Laboratoire Temps-Fréquence, Neuchâtel, Switzerland; Australian Bureau of Meteorology, Research and Development Branch, Melbourne, Victoria, Australia; University of Wuppertal, Department of Physics, Wuppertal, Germany

Riassunto:  This study has two objectives: (1) it characterizes contrails at very low temperatures and (2) it discusses convective cirrus in which the contrails occurred. (1) Long-lived contrails and cirrus from overshooting convection are investigated above the tropical tropopause at low temperatures down to −88◦C from measurements with the Russian high-altitude research aircraft M-55 “Geophysica”, as well as related observations during the SCOUT-O3 field experiment near Darwin, Australia, in 2005. A contrail was observed to persist below ice saturation at low temperatures and low turbulence in the stratosphere for nearly 1 h. The contrail occurred downwind of the decaying convective system “Hector” of 16 November 2005. The upper part of the contrail formed at 19 km altitude in the tropical lower stratosphere at ∼60 % relative humidity over ice at −82 ◦C. The ∼1 h lifetime is explained by engine water emissions, slightly enhanced humidity from Hector, low temperature, low turbulence, and possibly nitric acid hydrate formation. The long persistence suggests large contrail coverage in case of a potential future increase of air traffic in the lower stratosphere. Cirrus observed above the strongly convective Hector cloud on 30 November 2005 was previously interpreted as cirrus from overshooting convection. Here we show that parts of the cirrus were caused by contrails or are mixtures of convective and contrail cirrus. The in situ data together with data from an upward-looking lidar on the German research aircraft “Falcon”, the CPOL radar near Darwin, and NOAA-AVHRR satellites provide a sufficiently complete picture to distinguish between contrail and convective cirrus parts. Plume positions are estimated based on measured or analyzed wind and parameterized wake vortex descent. Most of the non-volatile aerosol measured over Hector is traceable to aircraft emissions. Exhaust emission indices are derived from a self-match experiment of the Geophysica in the polar stratosphere in 2010. The number of ice particles in the contrails is less than 1 % of the number of non-volatile aerosol particles, possibly because of sublimation losses and unde-tected very small ice particles. The radar data show that the ice water content in convective overshoots is far higher than measured along the flight path. These findings add insight into overshooting convection and are of relevance with respect to hydration of the lower stratosphere.

Rivista/Giornale:  Atmospheric chemistry and physics (Print)
Volume n.:  17 (3)      Pagine da: 2311  a: 2346
Parole chiave: Applied spectroscopy - Diode laser - Cirrus cloud - Aircraft contrail
DOI: 10.5194/acp-17-2311-2017


Riferimenti visionabili in IsiWeb of Knowledge: (solo per sottoscrittori)
Per visualizzare la scheda dell'articolo su IsiWeb: Clicca qui

INO © Istituto Nazionale di Ottica - Largo Fermi 6, 50125 Firenze | Tel. 05523081 Fax 0552337755 - P.IVA 02118311006     P.E.C.    Info